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We investigate the effect on biomembrane mechanical properties due to the presence an external potential
for a nonconductive incompressible membrane surrounded by different electrolytes. By solving the Debye-
Hückel and Laplace equations for the electrostatic potential and using the relevant stress-tensor we find �1� in
the small screening length limit, where the Debye screening length is smaller than the distance between the
electrodes, the screening certifies that all electrostatic interactions are short range and the major effect of the
applied potential is to decrease the membrane tension and increase the bending rigidity; explicit expressions for
electrostatic contribution to the tension and bending rigidity are derived as a function of the applied potential,
the Debye screening lengths, and the dielectric constants of the membrane and the solvents. For sufficiently
large voltages the negative contribution to the tension is expected to cause a membrane stretching instability.
�2� For the dielectric limit, i.e., no salt �and small wave vectors compared to the distance between the
electrodes�, when the dielectric constant on the two sides are different the applied potential induces an effective
�unscreened� membrane charge density, whose long-range interaction is expected to lead to a membrane
undulation instability.
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I. INTRODUCTION

Biomembranes are thin fluid films composed mostly of
lipids. In cells they help separate different cellular environ-
ments and compartments. Biomembranes are typically
“soft,” i.e., the typical energy required to bend them is of the
order the thermal energy and membrane tension is often
quite small. Softness implies that membrane geometry can
become sensitive to different perturbations, such as alteration
of the electrostatic configuration. Much effort has, for in-
stance, been devoted to calculation of the electrostatic con-
tribution to tension and bending rigidity for membranes with
fixed charges or surface potentials in an electrolyte solution,
see Ref. �1� for a review; in general, the presence of fixed
�and screened due to the electrolyte� charges tend to increase
bending rigidity and hence make the membrane stiffer. How-
ever, it has also been found that when the membrane charges
are not fixed but free to rearrange themselves on the surface
and no electrolyte solution is present to screen the interac-
tion, a long-wavelength undulation instability can occur �2�,
somewhat similar to DNA condensation �3�. Electric fields
can also be present across intrinsically neutral membranes.
An example would be a nerve cell, where ion pumps create a
potential difference between the two sides of the nerve cell
membrane �4�. Another example is provided in laboratories

by the routine formation of liposomes in a process known as
electroformation �5�, during which lipid membranes swell
from electrodes under the application of electric fields.

In this study we investigate the electromechanical cou-
pling of a membrane and an applied potential. In particular,
we solve the Debye-Hückel and Laplace equations for the
electrostatic potential for a nonconductive, incompressible
membrane between two flat electrodes �kept at fixed poten-
tials�. On either side the membrane is surrounded by differ-
ent electrolyte solutions. From the solutions for the potential
we quantify how the corresponding induced membrane
charges change the free energy for the membrane and iden-
tify electrostatic contributions to membrane mechanical pa-
rameters. In the presence of an electrolyte �in the small
screening length limit, see below� we find that the electro-
static contribution to membrane bending rigidity is positive.
In the absence of added salt �the dielectric limit� the mem-
brane becomes unstable against long wavelength undulations
�in a somewhat similar fashion to the behavior of the inter-
face between two immiscible fluids, see Ref. �6�� if the two
fluids surrounding the membrane have different dielectric
constants. For the symmetric dielectric case, as well as for
the small screening length limit, the membrane tension re-
ceives a negative contribution; for a sufficiently large applied
potential this contribution would lead to a membrane stretch-
ing instability.

Several studies �see Ref. �1�, and references therein� have
investigated the electrostatic contributions to tension and
bending rigidity for membranes having a fixed surface
charge density or fixed potential at the membrane. However,
less work has been dedicated to the effect of induced charges
due to an applied potential, as considered in the present
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study. The results found here complement previous results
given in Ref. �7� �using coupled hydrodynamical-electric
field equations, similar to Ref. �8�� for the symmetric case of
a membrane surrounded by identical electrolytes �in the
small screening length limit�, to the asymmetric case and by
giving an explicit expression for the bending rigidity; in the
limit of identical electrolytes on the two sides of the mem-
brane our expression for the tension agrees with that derived
in Ref. �7�. Also, our formulation allows us to investigate the
dielectric �no salt� limit, which was not considered in Ref.
�7�. However, unlike Ref. �7� we do not consider any dy-
namical effects. In contrast to the study �9� based on electro-
lyte conductivities, our approach through the Debye-Hückel
equation allow us to study the effect of a finite Debye screen-
ing length. In Ref. �9� a nonzero membrane conductivity was
considered, whereas we consider nonconductive membranes.
Similar to the results in Ref. �9� we find a negative contribu-
tion to the membrane tension in the presence of an electro-
lyte, although the two results are difficult to compare be-
cause of the different mathematical formulations.

This work is organized as follows. In Sec. II we give the
general equations governing the electrostatic response of a
nonconductive membrane of any shape; the membrane re-
gion is described by the Laplace equation and the electrolyte
solutions on either side satisfy the Debye-Hückel equations.
In a standard fashion, the boundary conditions are that the
potential and the displacement fields should be continuous.
In Sec. III these equations are solved for the case of a flat
membrane in an external potential. In Sec. IV corrections to
the flat case solutions are derived for a weakly curved incom-
pressible membrane. In Sec. V the forces acting on the mem-
brane, as well as the corresponding electrostatic contribution
to the membrane free energy, are obtained. Assuming that
membrane fluctuations occur on a time scale slower than the
relaxation time for the electrostatic potential we use the ex-
pressions for the forces for the weakly curved membrane in
order to obtain the renormalized membrane mechanical pa-
rameters, such as tension and bending rigidity �in terms of a
power series expansion in the wave vector� as a function of
the applied potential, the salt concentrations �entering
through the Debye screening lengths�, and the dielectric con-
stants of the membrane and the solvents. We investigate
three different limits: �1� the small screening length limit,
where the Debye screening length is smaller than the dis-
tance between the electrodes, �2� the dielectric limit, i.e., no
salt, �3� the symmetric case, where the salt concentration and
dielectric constants on the two sides of membrane are equal.
The results for the membrane mechanical parameters in the
three limits above �the main results in this study� are given in
Eqs. �41�–�51�. Finally, in Sec. VI a summary and discussion
are given.

II. GENERAL FORMULATION

We are interested in how biomembrane mechanical pa-
rameters �and thereby, for instance, membrane fluctuations�
are effected by an applied potential. Two parameters charac-
terizing a membrane in the absence of an applied potential
are the tension � and the bending stiffness K �10,11�. As an

external potential is applied there will in general be electro-
static contributions ��el and Kel� to both of these quantities so
that �→�+�el and K→K+Kel in the presence of the applied
potential. An aim of this paper is to calculate �el and Kel. In
a standard fashion we consider a small perturbation from a
flat membrane, characterized by a height undulation h�x ,y�
�where x and y are coordinates in the plane of the flat mem-
brane� and solve the electrostatic equations �via a Fourier
transformation in the x and y coordinates� for this weakly
perturbed geometry. Through a power series expansion in
wave vector q �q=�qx

2+qy
2, where qx and qy are the Fourier-

transform variables of x and y, respectively� of the free en-
ergy G one may identify �el and Kel �see Chap. 2 in Ref.
�11��. We find it convenient to, rather than utilize the free
energy directly, consider the electrostatic contribution to the
“restoring” force, from which we identify �el �Kel� as the

prefactor in front of the −q2h̄ �−q4h̄� term in a small q ex-

pansion of the force, where h̄= h̄�qx ,qy� is the Fourier trans-
form of h�x ,y�. Notice that for obtaining the tension and

bending rigidity it suffices to keep terms linear in h̄ in the
restoring force expression. In general there may be other
terms in the power series expansion in q. For instance, as
noted in the Introduction, for the asymmetric dielectric case
there is a membrane undulation instability which mathemati-
cally arises due to the presence of a negative term linear in q
in the series expansion.

The approach described above relies on a “quasistatic”
approximation, i.e., we assume that membrane fluctuations
occur on a time scale tmem slower than the time scale tel over
which the electrostatic configuration adjusts itself �tel

� tmem�. This assumption allows us to solve the electrostatic
problem for a fixed, weakly curved �but otherwise arbitrary�
geometry. Let us estimate the time scales tel and tmem: To
estimate tel for an electrolyte we assume that this time scale
equals the time for an ion to diffuse the distance of the order
the Debye screening length, i.e., tel��−2 /D, where D is the
ion diffusion constant and � is the inverse Debye screening
length introduced below �one may more realistically assume
that tel=min��−2 ,q−2� /D, since for a wavelength perturbation
of the order 1 /q the ions need only diffuse a distance 1/q for
the ion cloud to relax�. From the Einstein relation and
Stoke’s law, we have D=kBT / �6��R�, where � is the vis-
cosity, kB is the Boltzmann constant, T the temperature, and
R the ion Stoke’s radius, using kBT=4�10−21 J, �
=10−3 N s/m2 and R�0.1–0.3 nm �12�, we find D
�10−9 m2/s. Furthermore, taking �−1=10 nm we obtain tel
�10−7 s. For the membrane relaxation time we estimate �13�
tmem�� / �q3K�, and assuming q−1�100 nm, K=10−19 J we
find tmem�10−5 s. Therefore, indeed, we have tel� tmem in
general. We note from the expressions above that the longer
the wavelength perturbation �smaller q� the better justified is
our quasistatic approximation. In the dielectric limit there are
no ions and the relevant relaxation time tel is instead that of
water relaxation �hydrogen-bond rearrangement time�, which
typically is of the order 10−12 s �see Ref. �14�� at room tem-
perature, again certifying that tel� tmem.

We are now set to consider the effect of an applied poten-
tial on the mechanical properties of a biomembrane within
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the quasistatic approximation. The explicit problem we con-
sider is depicted in Fig. 1: an incompressible membrane of
thickness 2d is placed with its center-of-mass at positions z
=0 between two flat electrodes �at z= ± �L+d�� which are
kept at potentials 	
� /2; the distance between the mem-
brane surface �for a flat membrane� and the electrodes are
hence L. Regions 1 and 3 are electrolyte solutions, and in
general these two regions are of different composition �dif-
ferent concentration of ions and different dielectric con-
stants�. As noted above the first stage towards calculating
electrostatic forces on the membrane and thereby the mem-
brane free energy in the presence of the applied potential is
to obtain the electrostatic potential ��x��. In this section we
give general equations determining ��x�� for any membrane
shape. In the subsequent sections we analyze in detail: �i� the
flat membrane case, see Fig. 1�a�; all quantities for this case
carry a superscript �0�, �ii� for the weakly curved situation
�since we assume the membrane to be incompressible we
only consider undulation deformation modes�, illustrated in
Fig. 1�b�, there will be corrections of all quantities compared
with the flat case; all such corrections carry the superscript
�1�.

For all three regions the electrostatic potential satisfies the
Poisson equation �using SI units �15��

0��2���x�� = − ���x�� . �1�

We will henceforth use a subscript � �=1, 2, or 3� to distin-
guish quantities in the three different regions. Above 0 is the
permittivity of vacuum, � is the dielectric constant for re-
gion �, and ���x�� is the free charge density �the bound
charges are, in a standard fashion, taken into account through
��. We require

	
region �

���x��d3x = 0, �2�

i.e., that in each region we have charge neutrality �the mem-
brane is assumed to be impermeable to ions�. Let us now
consider the explicit expression for the charge density in
each of the three regions.

Region 2. In region 2 we assume

�2�x�� = 0, �3�

i.e., there are no free charges in this region.
Region 1. In region 1 we assume that there are ions of

two types �positively and negatively charged� which are
taken to be Boltzmann distributed, i.e. �i distinguishes the
different ionic species�, �1�x��=
iq

icbulk,1
i exp�−�qi��1�x��

−�1
0��, where qi is the charge of ionic species i, cbulk,1

i is the
concentration of ions in region 1, and �=1/ �kBT�, with kB

the Boltzmann constant and T the temperature, as before.
The constant �1

0 is determined through the charge neutrality
condition �see also Appendix A�. Making a linear approxi-
mation, i.e., assuming �qi��1�x��−�1

0��1, and using the
charge neutrality condition in the absence of the external
potential 
iq

icbulk,1
i =0 we find that the charge density can be

written

�1�x�� = − 01�1
2��1�x�� − �1

0� , �4�

with

�1
2 =

�

01



i

�qi�2cbulk,1
i , �5�

where �1 is the inverse Debye screening length for region 1.
Region 3. For region 3, with the same approximations as

above, the charge density becomes

�3�x�� = − 03�3
2��3�x�� − �3

0� , �6�

where

�3
2 =

�

03



i

�qi�2cbulk,3
i �7�

is the square of the inverse Debye screening length and cbulk,3
i

is the concentration of ions in region 3.
Inserting Eq. �3� into Eq. �1� yields the Laplace equation

�2�2�x�� = 0 �8�

for the potential in region 2. Inserting Eqs. �4� and �6� into
Eq. �1� gives the Debye-Hückel equation ��=1,3�

2

1κε1

3κε3

∆φ/2

2d

L

L

Region 3

Region 2

Region 1

−∆φ/2
z=L+d

z=0
z=d

z=−d
ε

z=−L−d

z=L+d

z=−L−d

−∆φ/2

∆φ/2

Region 1

Region 3 z=d+h(x,y)
z=h(x,y)

z=−d+h(x,y)
Region 2

(a)

(b)

FIG. 1. Cartoon of the problems considered in this study: a
membrane of width 2d is placed between two electrodes. Regions 1
and 3 are characterized by dielectric constant 1 and 3 and Debye
screening lengths �1 and �3, respectively. The membrane is as-
sumed nonconductive �and incompressible� and characterized by a
dielectric constant 2. Solving for the electrostatic potential ��x��
for �a� a flat membrane and �b� a weakly curved membrane �and
utilizing the stress tensor� allows us to obtain the electrostatic con-
tribution to the membrane mechanical parameters.
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�2���x�� − ��
2����x�� − ��

0� = 0 �9�

for regions 1 and 3. The charge neutrality condition �2� for
region 1 and 3 becomes

	
region �

����x�� − ��
0�d3x = 0. �10�

Note that we have trivial charge neutrality in region 2 �see
Eq. �3��.

Let us now consider the boundary conditions supplement-
ing the equations above. At the electrodes we have

��1�x���z=−L−d =

�

2
,

��3�x���z=L+d = −

�

2
. �11�

In addition we have that the potential and the normal com-
ponent of the displacement fields are continuous across the
region-1–region-2 and region-2–region-3 boundaries, i.e.
�15�,

�1�x�� = �2�x�� at the region 1–2 boundary,

�2�x�� = �3�x�� at the region 2–3 boundary �12�

and

1n̂ · �� �1�x�� = 2n̂ · �� �2�x�� at region 1–2 boundary,

2n̂ · �� �2�x�� = 3n̂ · �� �3�x�� at region 2–3 boundary,

�13�

where n̂ is the normal to the respective interface. Equations
�8�–�10�, together with the boundary conditions �11�–�13�
completely determine the electrostatic potential ��x��.

From the solutions for ��x�� one can calculate other quan-
tities. For instance, one may obtain the induced potential
defined through �ind�x��=��x��−�appl�x��, where the applied
potential is �appl�x��=−
�z / �2�L+d��. The total electric field

is given by E� �x��=−�� ��x��, the applied electric field is E� appl

=−�� �appl, and the induced field is E� ind=−�� �ind=E� −E� appl. In
the next section we solve the equations given in this section
for the case of a flat membrane. In the section after we find
corrections to the flat case solutions for a weakly curved
membrane.

III. POTENTIAL FOR A FLAT MEMBRANE

Below we obtain the electrostatic potential in and around
a flat membrane. We use a superscript �0� to indicate the flat
case quantities.

For a flat membrane the solutions depend only on z, and
explicitly the solutions to Eqs. �8� and �9� are

�2
�0��z� = �2

0 + A2z , �14�

where �2
0 and A2 are constants determined by the boundary

conditions below. Also,

�1
�0��z� = �1

0 + A1�e�1�z+d� − e−�1�L+d+z�� �15�

and

�3
�0��z� = �3

0 + A3�e−�3�z−d� − e−�3�L+d−z�� , �16�

where �1
0, �3

0, A1, and A3 are constants, and we used the
charge neutrality condition �10�.

We now use the boundary conditions �together with the
fact that the boundary surfaces are at z= ±d for the flat case
considered here, see Fig. 1�a�� in order to determine the un-
known constants above. From Eq. �11�, the condition that the
potential is continuous �Eq. �12�� and the fact that the dis-
placement field is continuous �Eq. �13��, we get six equations
for the six constants ��

0 and A� ��=1,2 ,3�. Solving these
equations leads to

A1 = −

�

2�1 + e−�1L�
l1� ,

A2 = −

�

22
� ,

A3 =

�

2�1 + e−�3L�
l3� �17�

and

�1
0 =


�

2
�1 − g��1�l1�� ,

�2
0 = −


�

2
�g��1�l1 − g��3�l3�� ,

�3
0 = −


�

2
�1 − g��3�l3�� , �18�

where

g�q� =
1 − e−qL

1 + e−qL = tanh�qL

2
 �19�

and �=1/ �g��1�l1+g��3�l3+d /2�, and we introduced the
“rescaled” Debye screening lengths l1= �1�1�−1 and l3

= �3�3�−1.
There are three limits of particular interest.
�1� “Small” screening length, �1L ,�3L�1. For this case

we have g�q�→1 in Eqs. �17� and �18�. Also the prefactors
for A1 and A3 simplify.

�2� We define the dielectric limit as the limit of no salt,
i.e., cbulk,1

i ,cbulk,3
i →0; within the Debye-Hückel approxima-

tion this is the equivalent to �1 ,�3→0. Expanding the expo-
nentials in Eqs. �15� and �16�, and using the explicit form for
A1 and A3 above one straightforwardly show that the solu-
tions in all three regions take the form ��x��=az+b where a
and b are constants independent of �1 and �3, as it should
since in the dielectric limit the potential satisfies Laplace
equation �2��x��=0, see Eq. �9�.

�3� The symmetric case, 1=3 and �1=�3. In this limit
we find that A1=−A3, �1

0=−�3
0 and �2

0=0.
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The potential and charge densities are illustrated in Fig. 2,
using the flat membrane results in Eqs. �14�–�16�. The elec-
tric field in the z direction �the electric field components in
the x and y direction are zero for a flat membrane� is also
illustrated. We notice that the potential is continuous as it
should and that the free charges tend to build up close to the
membrane and electrodes �for �1 ,�3�0�. Since the normal
component of the displacement field is continuous across the
boundaries, the relative jump in the electric field as the
boundary between region 1-2 �region 2-3� is crossed equals
2 /1 �2 /3�, see Fig. 2 �bottom�.

IV. POTENTIAL FOR A WEAKLY CURVED MEMBRANE

We now consider a weakly curved membrane, see Fig.
1�b�: The center of the membrane is slightly displaced from
the flat �z=0� case, according to z=h�x ,y� with membrane
surfaces at z= ±d+h�x ,y� �16�. We write the solution for the
electrostatic potential according to ��=1,2 ,3 as before�

���x�� = ��
�0��z� + ��

�1��x�� , �20�

where ��
�0��z� is the potential for region � for the flat case

given in the previous section and ��
�1��x�� is a correction to

the potential due to the perturbed geometry. In this section
we will calculate ��

�1� only to first order in the perturbation
h�x ,y�; this suffices for obtaining membrane mechanical pa-
rameters such as tension and bending rigidity �see discussion
at the beginning of Sec. II�. In each of the regions Eqs. �8�
and �9� has to be satisfied. ��

�0��x�� satisfies these equations
for h�x ,y��0, and we therefore require that the corrections
satisfy

�2�2
�1��x�� = 0 �21�

and ��=1,3�

�2��
�1��x�� − ��

2��
�1��x�� = 0. �22�

Let us now consider the boundary conditions �the boundary
surfaces are at z= ±d+h�x ,y� for the curved membrane con-
sidered here�. Since ��

�0��z� satisfies Eq. �11� we require for
the perturbation

��1
�1��x���z=−L−d = 0,

��3
�1��x���z=L+d = 0. �23�

Before imposing the conditions that the potential and the
displacement fields are continuous, Eqs. �12� and �13�, we
note that for “small” h any scalar quantity g�x�� may be ex-
panded, to first order in h, according to:

g�x�� = g�0���x���z=±d+h + g�1���x���z=±d+h

� ��g�0��x�� + h
�g�0��x��

�z
+ g�1��x���

z=±d
,

we briefly discuss the quantitative meaning of “small” h at
the end of this section. Equations �12� and �13� can then be
written

−1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

z/L

Φ
(z
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∆Φ
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ε
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ε
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=80

κ
1
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Φ
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−0.5

0

0.5
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2
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ρ(
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ε 0
∆Φ

/d
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(z
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(∆

Φ
/L

)

E
E
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E

ind

(a)

(c)

(b)

FIG. 2. Illustration of the response of a flat membrane, sur-
rounded by different electrolyte solutions, to an applied potential.
�a� Electrostatic potential ��x��=��0��z� for a flat membrane �solid
curve� as a function of position z. Illustrated are also the applied
potential �appl�z� �dotted curve� and the induced potential �ind�z�
�dashed curve�. �b� Free charge density ��z� �solid curve� as a func-
tion of position z. The dashed curve at ��0 corresponds to the free
charge density in the absence of the applied potential �
�=0�. �c�
The electric field E=−�� /�z in the z direction for different posi-
tions z. Illustrated are also the applied field Eappl=−��appl /�z and
the induced field Eind=−��ind/�z. The vertical lines in each figure
corresponds to the membrane surfaces. The chosen parameter val-
ues are the same for all three graphs, and are listed in the top graph
�we chose the somewhat unrealistically large value 2=15 in order
to be able to better visualize the Debye screening layers, a more
reasonable value would be 2�2�. Note that the potential is con-
tinuous, whereas the free charge density and the z component of the
electric field are not continuous, as it should.

APPLYING A POTENTIAL ACROSS A BIOMEMBRANE:… PHYSICAL REVIEW E 75, 051916 �2007�

051916-5



��h
��1

�0�

�z
+ �1

�1��
z=−d

= ��h
��2

�0�

�z
+ �2

�1��
z=−d

,

��h
��2

�0�

�z
+ �2

�1��
z=d

= ��h
��3

�0�

�z
+ �3

�1��
z=d

�24�

and

1��h
�2�1

�0�

�z2 +
��1

�1�

�z
�

z=−d
= 2��h

�2�2
�0�

�z2 +
��2

�1�

�z
�

z=−d
,

2��h
�2�2

�0�

�z2 +
��2

�1�

�z
�

z=d
= 3��h

�2�3
�0�

�z2 +
��3

�1�

�z
�

z=d
,

�25�

where we used the fact that ��
�0� satisfies the boundary con-

ditions for h=0. Equations �21� and �22� together with the
boundary conditions �23�–�25� completely determine the cor-
rection ��

�1��x��.
We proceed by introducing the Fourier transform in the x

and y direction �not for z direction� of ��
�1��x��:

�̄�
�1��qx,qy,z� =	 dxdyeiqxx+iqyy��

�1��x�� , �26�

and similarly we denote by h̄�qx ,qy� the Fourier transform of
h�x ,y�. Equations �21� and �22� can then be written

��̄2
�1�

�z2 − q2�̄2
�1� = 0 �27�

and ��=1,3�

��̄�
�1�

�z2 − q̄�
2�̄2

�1� = 0, �28�

where q=�qx
2+qy

2 and

q̄� = �q2 + ��
2 . �29�

The boundary conditions �23�–�25� remains the same in Fou-
rier space �using the fact that ��

�0� is independent of x and y�,
with the sole replacement ��

�1�→�̄�
�1� and h→ h̄. The solu-

tion of Eq. �27� is

�̄2
�1��q,z� = C2�q�eqz + D2�q�e−qz, �30�

with q-dependent coefficients C2�q� and D2�q�. Using the
boundary condition �23� we find that the solutions to Eq. �28�
are

�̄1
�1��q,z� = D1�q��eq̄1�z+d� − e−q̄1�z+d+2L�� �31�

and

�̄3
�1��q,z� = D3�q��e−q̄3�z−d� − eq̄3�z−d−2L�� . �32�

The unknown coefficients C2�q�, D1�q�, D2�q�, and D3�q� are
determined through the boundary conditions �24� and �25�.
We find

D2�q� = − h̄ �
eqdk3

+�p1 + 1q̄1r�q̄1�m1
−� − e−qdk1

−�p3 − 3q̄3r�q̄3�m3
+�

e2qdk1
+k3

+ − e−2qdk1
−k3

− , �33�

where we introduced the short-hand notations ��=1,3�

k�
± = k�

±�q� = 2q ± �q̄�r�q̄�� ,

m�
± = A2 ± A����1 + e−��L� ,

p� = �A���
2�1 − e−��L� ,

r�q� =
1 + e−2qL

1 − e−2qL , �34�

with A� given in Eq. �17�. The remaining coefficients are

C2�q� =
eqd

k1
− �D2�q�eqdk1

+ + h̄p1 + h̄1q̄1r�q̄1�m1
−� ,

D1�q� =
1

1 − e−2q̄1L �h̄m1
− + C2�q�e−qd + D2�q�eqd� ,

D3�q� =
1

1 − e−2q̄3L �h̄m3
+ + C2�q�eqd + D2�q�e−qd� . �35�

We notice that C1�q�, D1�q�, D2�q�, and D3�q� are all propor-

tional to h̄ as they should be. The full solution for the elec-
trostatic potentials ���x�� for a weakly curved membrane is
given by Eq. �20�, where ��

�0��z� were given in the previous
section and the Fourier transform of ��

�1��x�� are given by
Eqs. �30�–�32� together with Eqs. �33�–�35�.

Again, we point out that in order to obtain membrane
mechanical parameters, such as tension and bending rigidity,
it suffices to know the restoring force �calculated in the next

section� to first order in h̄, i.e., it is enough to consider
“small” fluctuation amplitudes. Therefore, even thought the
results given above formally assume that h is smaller than all
other length scales in the problem �d, ��

−1, q−1, and L�, they
are sufficient for the purpose of calculating the tension and
bending rigidity. A different matter is whether the Helfrich
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form of the electrostatic contribution to the restoring force
�in terms of tension and bending rigidity�, derived in the next
section, describe well “large” membrane fluctuations in the
presence of an applied potential. To address this question we
must clarify the meaning of “small” h, i.e., make clear what
is the relevant dimensionless expansion parameter, in the
context of calculating the electrostatic contribution to the
membrane restoring force or membrane free energy. The
electrostatic contribution to the membrane free energy is de-
termined by the interactions between induced charges at or in
the vicinity of the membrane, with characteristic interaction
distances of the order d and ��

−1 �here we consider the small
screening length limit, where �� is nonzero�. Therefore,
whenever dq�1, ��

−1q�1 and hq�1 all interactions are ef-
fectively local on a locally flat membrane and the free energy
must take the Helfrich form �10�. Note that this argument is
valid independent of particular values of h�� and h /d, and
the free energy expansions given in the next section �in the
small screening length limit� is therefore an expansion in the
�small� parameters hq, dq, ��

−1q, but when these parameters
are small there is no restriction on the values of h�� and h /d.
In consistency with the discussion above, we point out that in
Ref. �17� a method that formally avoids the assumptions
h���1 and h /d�1, by utilizing the geometrical transforma-
tion z�=z−h�x ,y�, was found to give results consistent with
results obtained by the flat membrane perturbative approach
�of the kind used in this paper� for a charged membrane in an
electrolyte.

V. FORCES, FREE ENERGY AND ELECTROSTATIC
CONTRIBUTION TO MEMBRANE MECHANICAL

PARAMETERS

In this section we derive general expressions for the mem-
brane forces �within the quasistatic approximation� and the
corresponding electrostatic contribution to the membrane
free energy, using the results from the previous two sections.
In particular, we obtain the electrostatic contribution to the
membrane free energy for three cases: �1� the small screen-
ing length limit, where the Debye screening length is smaller
than the distance between the electrodes, �2� the dielectric
limit, i.e., no salt, and, �3� the symmetric case, where the salt
concentrations and dielectric constants on the two sides of
the membrane are equal.

A. Membrane forces via a stress-tensor calculation

The forces acting on the membrane are obtained using the
relevant stress tensor Tij. Following the derivation in Appen-
dix A we have �in the Debye-Hückel regime considered
here�

Tij = 0�� ���

�xi

���

�xj
−

1

2
�ij


k

���

�xk

���

�xk
− �ij

��
2

2
��� − ��

0�2
− p�

0�ij , �36�

where x1=x, x2=y, and x3=z. The first two terms are the
usual Maxwell stress-tensor �15,18�, the third term is an os-
motic contribution for the ions being “confined” by the elec-

tric potential �see Appendix A�, and the last term incorpo-
rates pressures p�

0 for each of the three regions ��=1,2 ,3�.
The discontinuities of Tij at the region boundaries will pro-
duce forces on the membrane which will have to be balanced
by other forces in the system, such as, for example, viscous
forces within the membrane or from the surrounding bulk
fluids. We are only interested in calculating the electrome-
chanical contribution at a given �x ,y� to this total force bal-
ance here. To do this we note that the force �per unit area� in
the i direction on a region boundary from the stress in a
given region is ±
 jnjTji evaluated at the boundary, where the
membrane normal nj is taken to point towards positive z and
the plus �minus� sign applies when the region is at larger
�smaller� z than the boundary. Defining

f� = f�
�0� + f�

�1�,

f�
�0� = �1

2
0��� ���

�0�

�z
2

− ��
2���

�0� − ��
0�2��

z=±d
− p�

0 ,

f�
�1� = 0��� ���

�0�

�z
�h

�2��
�0�

�z2 +
���

�1�

�z
 − ��

2���
�0� − ��

0�

��h
���

�0�

�z
+ ��

�1���
z=±d

, �37�

where z=−d �z=d� is to be used for forces acting on the
interface separating region 1 and 2 �region 2 and 3�, and
using that to first order in h: nz=1, nj =−� jh �j=x ,y�, we find
that the z component of the total force acting on the surface
separating regions 1 and 2 is f1−2= f2− f1. Using the explicit
expressions for the potentials from the previous two sections
we find

f1−2 = f1−2
�0� + f1−2

�1� ,

f1−2
�0� = − 0�21A1

2�1
2e−�1L −

2A2
2

2
 + p1

0 − p2
0,

f̄1−2
�1� = − 0�D1�q�1A1�1�q̄1�1 + e−�1L��1 + e−2q̄1L� − �1�1

− e−�1L��1 − e−2q̄1L�� − 2A2q�C2�q�e−qd − D2�q�eqd�� ,

�38�

where f1−2
�0� is the force on a flat membrane interface and f1−2

�1�

is the first order correction for a weakly curved membrane,
here expressed explicitly in terms of its Fourier transform

f̄1−2
�1� ; note that f̄1−2

�1� is proportional to h̄ �via D1, C2, and D2�,
as it should. Similarly, the z component of the force acting on
the surface separating regions 2 and 3 is f2−3= f3− f2 and we
find

f2−3 = f2−3
�0� + f2−3

�1� ,

f2−3
�0� = 0�23A3

2�3
2e−�3L −

2A2
2

2
 + p2

0 − p3
0,
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f̄2−3
�1� = 0�D3�q�3A3�3�q̄3�1 + e−�3L��1 + e−2q̄3L� − �3�1

− e−�3L��1 − e−2q̄3L�� − 2A2q�C2�q�eqd − D2�q�e−qd�� ,

�39�

where A� are given in Eq. �17� and C2�q�, D��q� are given in
Eqs. �33� and �35�. The results given in Eqs. �38� and �39�
completes the calculation of the forces acting on the mem-
brane interfaces. In Appendix B we utilize these results in
order obtain results for the total net force on a flat membrane
in some detail. In the next subsection the membrane free
energy and the electrostatic contribution to the membrane
mechanical parameters in different limits are investigated.

B. Contribution to the free energy of the membrane

Let us now investigate the electrostatic contribution to the
membrane free energy. We first note that if the fluids sur-
rounding the membrane are incompressible, then the pres-
sures p�

0 �occurring in the zero order terms in Eqs. �38� and
�39�� adjust such that there is no net force �and hence no net
movement of the membrane� in the z direction; we will here
consider such incompressible fluids and also assume the
membrane to be incompressible. Nevertheless the investiga-
tion of the net force f �0�= f1−2

�0� + f2−3
�0� on a membrane provides

some insights into the electrostatic problem under consider-
ation here, and is given in Appendix B.

Let us now proceed by considering the z component of

first order correction to the forces f̄ �1�= f̄1−2
�1� + f̄2−3

�1� ; from f̄ �1�

one can obtain the work on the membrane under an undula-
tion deformation of the shape, and thereby the free energy
and electrostatic contribution to membrane mechanical pa-
rameters �through a power series in q, i.e., a long wavelength
expansion�. In particular we want to compare the results of
such an expansion to the corresponding result for a “free”
membrane: the free energy G for a membrane is described by
the Helfrich form �10,11� G=�dA�2KH2+��, where H is the
mean curvature, dA the area element on the membrane, � is
the tension, and K is the bending rigidity. The restoring force
is then obtained as f rs=−�G /�h giving in q space

f̄ rs�q� = − ��q2 + Kq4�h̄ + O�h̄2� . �40�

This type of expansion requires only that the expectation
value of ��h�x ,y��2 is small �11�, i.e., that the characteristic
fluctuation amplitude is small compared to 1/q. In the pres-
ence of an applied potential there will be electrostatic con-
tributions �el and Kel to the tension and bending rigidity, so
that �→�+�el and K→K+Kel. Below we proceed by ex-

panding f̄ �1�, using the results in Eqs. �38� and �39�, in a
power series in q for different limits in order to obtain �el
and Kel �note, however, in the expansion for the dielectric
limit, for qL�1, we also find terms odd in q�. Note that
since the tension and bending rigidities are identified through
terms in the restoring force expansion which are proportional

to h̄, second and higher order terms in h̄ �see discussion at
the end of the previous section� do not contribute to �el and
Kel.

�1� In the “small” screening length limit �1L ,�3L�1, a

straightforward but lengthy expansion of f̄ �1� in a power se-
ries in q assuming that the wavelength of the perturbation
�=2� /q� is larger than the membrane thickness and the De-
bye screening lengths qd ,q /�1 ,q /�3�1, gives

f̄ �1� = − ��elq
2 + Kelq

4 + O�q6��h̄ . �41�

The explicit expression for the electrostatic contribution to
the tension is

�el = −
0
�m

2

2

l1 + l3 + 4d/2

�l1 + l3 + 2d/2�2 , �42�

where, as before, the “rescaled” Debye screening lengths are
l1= �1�1�−1 and l3= �3�3�−1. We also introduced


�m = �1
0 − �3

0 =

�

2

l1 + l3 + 2d/2

l1 + l3 + d/2
�43�

being the potential difference between the main parts of the
two bulk fluids. Notice that �el gives a negative contribution
to the tension. The fact that �el�0 originates from the fact
that the applied potential creates a net charge density on
either side of the membrane surfaces, see Fig. 2; since ions
of equal charge repel each other the system would, for a
compressible membrane, be able to decrease the free energy
by separating the charges through a stretching of the mem-
brane �i.e., by increasing the membrane area�. For an incom-
pressible membrane �as assumed here� the membrane is
likely to respond to the electrostatically induced negative
tension by an opposite increase in the membrane elastic con-
tribution to the tension. If the magnitude of �el exceeds the
membrane elastic strength �tensile strength� a stretching in-
stability occur. For the symmetric case ��=�1=�3 and 
=1=3� Eq. �42� becomes

�el = �el
0 1 + ̃m��d�−1/2

�1 + ̃m��d�−1�2 ,

�el
0 = −

02�
�m�2

2d
, �44�

where we introduced the ratio ̃m�2 / between the mem-
brane and surrounding medium dielectric constant �typically
̃m�1/40, see Refs. �1� and �7��. We notice that when s
= ̃m��d�−1�1, i.e., for an effectively small screening length
compared to the membrane width, the tension approaches
�el

0 ; the dimensionless parameter s is commonly appearing in
membrane electromechanical problems, see Refs. �1� and �7�.
From Eq. �42� we notice that for the asymmetric case we
similarly have �el��el

0 for s�= �2 /����d�−1�1, where �
=1,3. Since �el

0 only depend on the membrane dielectric
constant, membrane width, and the applied potential, �el is
for large salt concentration independent on the properties of
the surrounding medium �i.e., independent on �1, �3, 1, and
3�. The origin of this result is discussed below.

The electrostatic contribution to the bending rigidity is
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Kel = 0
�m
2 b0 + b1d + b2d2 + b3d3 + b4d4

�l1 + l3 + 2d/2�3 �45�

with coefficients

b0 =
1

8
��l1�1

−2 + l3�3
−2��l1 + l3� + 2l1l3��1

−1 + �3
−1�2� ,

b1 =
1

4
� 3

2
�l1�1

−2 + l3�3
−2� + 8l1l3��1

−1 + �3
−1� ,

b2 = 2� 1

2
�l1�1

−1 + l3�3
−1� + 2l1l3 ,

b3 =
8

3

1

2
�l1 + l3� ,

b4 =
4

3

1

2
2 . �46�

We point out that Kel�0, i.e., the applied potential tends to
make the membrane more rigid towards bending. During a
bending deformation the induced charge density on one side
of the membrane gets compressed, whereas the charge den-
sity on the opposite side gets expanded. The free energy
changes of compression and expansion has different signs,
but are in general of different magnitude. It is only for the
case that all Debye screening charges are collapsed onto the
surfaces ��→�� and zero membrane thickness d→0 that the
expansion and compression free energies are identical and
Kel=0 �see Eq. �45��. Thus, loosely speaking, the smaller the
“effective” membrane thickness �the membrane thickness in-
cluding the Debye screening layer thicknesses� the smaller is
the bending rigidity. For the symmetric case ��=�1=�3 and
=1=3� we write Eq. �45� according to

Kel = Kel
0 �1 + ̃m��d�−1�−3�1 + 4̃m��d�−1 + 3̃m�1 + ̃m���d�−2

+ ̃m�9/8 + 3̃m���d�−3 + �9/8�̃m
2 ��d�−4� ,

Kel
0 =

1

6
02d�
�m�2. �47�

We note that in the limit of small relative membrane dielec-
tric constant ̃m→0 as well as for small screening length
compared to the membrane thickness ��d�−1→0, we have
Kel→Kel

0 . Notice that, in practice, ̃m is always small �1/40,
and therefore we have Kel→Kel

0 also for “not too small” val-
ues for ��d�−1. Similarly, we note from Eq. �45� that for the
asymmetric case we have Kel→Kel

0 in the 2 /�→0 and in
the ���d�−1→0 ��=1,3� limits. For the above considered
limits the major part of the potential drop is across the mem-
brane �since 2 /� or ��d�−1 is small�, and hence the electric
field is essentially zero everywhere except for the membrane
region. Therefore, the membrane parameters play the domi-
nant role in the expression for Kel and �el �notice that Kel

0 and
�el

0 depend only on 02, d, and 
�m�, provided that the
interactions of the induced surface charges do not occur
through the surrounding medium �again, certified if 2 /� or

��d�−1 is small�. Given that Kel and �el can only depend on
02, d, and 
�m in the limits considered above one may use
dimensional arguments to argue that the limiting results Kel

0

and �el
0 for the bending rigidity and tension must �up to a

constant prefactor� take the forms given in Eqs. �44� and
�47�. Figure 3 illustrates the electrostatic contribution to the
tension and membrane bending rigidity and its dependence
on salt concentration �Debye screening� for the symmetric
case for simplicity. We see that the absolute value of electro-
static contribution to the membrane tension increases with
increasing salt concentration, i.e., for increasing �. We at-
tribute this to an increase of screening charges �in a layer of
decreased thickness� next to the membrane; the increased
amount of charges will result in larger electrostatic repulsion
between ions in the screening clouds �see discussion follow-
ing Eq. �43��. In contrast to the effect on tension the electro-
static contribution to the bending rigidity decreases with in-
creasing salt concentration �with Kel approaching Kel

0 as �
→��. The reason behind this is that for bending properties
the thickness of the Debye screening layers plays a role—a
larger “effective” membrane thickness gives a higher bend-
ing rigidity �see discussion following Eq. �45�, and the spon-
taneous curvature calculation in Appendix C�. If we choose
the potential difference between the membrane sides 
�m
=100 mV, 2=2, and d=2.5 nm we find that Kel

0 =0.018kBT
�for room temperature, kBT=4�10−21�. From Fig. 3 we see
that Kel /Kel

0 can become quite large for small � and, there-
fore, for sufficiently small salt concentration the bending ri-
gidity Kel can exceed the thermal energy kBT; we therefore
expect that the increase of the bending rigidity in the pres-
ence of an applied electrostatic potential predicted in this
study can indeed be experimentally observed for sufficiently
large 
�m and small salt concentrations �note, however, the
below restriction on salt concentration due to assumptions in
the Debye-Hückel approximation�.

Let us compare the results above for the symmetric case
to the results obtained in Ref. �7�. We find that the result for
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FIG. 3. The electrostatic contributions �el and Kel to the tension
and the bending rigidity and as a function of Debye screening in the
small screening length limit �symmetric case�, using Eqs. �44� and
�47�. We express Kel in terms of the �room temperature� thermal
energy kBT and �el in terms of its infinite � value �el

0 . The param-
eters used are listed in the figure. Notice that increasing salt con-
centration, i.e., increased �, leads to a decrease in the electrostatic
contribution to the bending rigidity. In contrast, for increasing � the
magnitude of the electrostatic contribution to the tension increases.
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�el given in Eq. �44� agrees with the finite bilayer thickness,
nonconductive membrane tension �there denoted by �in
+�out� obtained in Ref. �7� �Note that in Ref. �7� the mem-
brane thickness is denoted by d, whereas we denote by d the
size of a lipid monolayer, so that in our case the membrane
thickness is 2d. Also note that, due to different boundary
conditions at the electrodes, the V in Ref. �7� should be
equated with our 
�m.� Concerning the bending rigidity re-
sult, we note that no explicit expression for Kel was given in
Ref. �7�, only a numerical value for a specific set of param-
eter values. We choose the same parameter values �
�m
=50 mV, d=2.5 nm, ̃m=1/40, and 2d�=7.4�, but note that
in order to get the expression for Kel one must also choose
the actual value of 2 �not just the ratio 2 /�, which was not
specified in Ref. �7�. We choose the standard value 2=2
�1,9� and then find that Kel=0.00467kBT, which is a bit less
than half the value found in Ref. �7�. Since no explicit ex-
pression for Kel was given in Ref. �7� it is difficult to com-
ment on the nature of this discrepancy. Finally, using the
approximate expression Kel�Kel

0 for the parameters above
we find that this approximation underestimates Kel by
merely 1%.

Here, a few words on the validity of the Debye-Hückel
approximation, used throughout this study, are in place. This
approximation should work when the quantity I=�qi����x��
−��

0�, where �=1,3, is very small, i.e., I�1 �see Sec. II�,
but in practice the Debye-Hückel approximation works well
whenever I�1, see Ref. �19� The maximum of I occurs at
the membrane surfaces, see Eqs. �15�, �16� and Fig. 2, and
we find that for the ��L�1 limit considered here we have
I=�qi
�l� / �2�l1+ l3+d /2��. Using d�2.5 nm, 2�2, and
��80, the denominator in the expression for I above is
dominated by the d /2 term whenever ��

−1�50 nm �in this
limit also 
��
�m�; for such ion concentrations we have
the following criterion for the validity of the Debye-Hückel
approximation

I =
1

2
�qi
�ms� � 1 �48�

again involving the parameter s�= �2 /�����d�−1. For a large
potential difference 
�m=100 mV we find that I�1 when
��

−1�50 nm �using qi=1.6�10−19C and assuming room
temperature�. This means that the Debye-Hückel approxima-
tion, which was made in Sec. II in the main text, works
surprisingly well, in general; the reason for this is the small
value of 2 /� ��1/40� guaranteeing that the major part of
the potential drop occurs across the membrane and that,
therefore, the potential drop across the electrolytes, for which
we applied the Debye-Hückel approximation, is modest, see
Fig. 2. We point out that the dielectric limit cbulk,�

i →0 does
not rely on a Debye-Hückel approximation and results to be
given below are therefore valid for any value of the applied
potential. We have shown above that our results for the small
screening length limit �with the above explicit restriction�
and in the dielectric limit are usually valid. We note, how-
ever, that there is in general an intermediate salt regime
where the Debye-Hückel approximation breaks down �for
sufficiently large applied potentials�. We leave the investiga-

tion of this intermediate regime for future studies.
We finally point out that there are alternative ways of

computing the membrane mechanical parameters. For in-
stance, one can calculate the tension by finding the integral
of the deviation of the pressure profile from the value of the
pressure far from the membrane. This approach is demon-
strated in Appendix C, giving the same result as Eq. �42� for
the tension. In that appendix the same type of approach is
also used in order to obtain the electrostatic contribution to
the membrane spontaneous curvature, see Eq. �C7�.

�2� In the dielectric limit �1 ,�3→0, one can again per-
form a power series expansion in q using Eqs. �38� and �39�
and assuming qd�1. In addition, there are two limits of
interest depending on whether the wavelength perturbation is
smaller or larger than L.

For �i� qL�1 we find that

f̄ �1� = − �aq + �elq
2 + bq3 + Kelq

4 + O�q5��h̄ , �49�

where

a = − 0�
�

L
2 �1

−1 − 3
−1�2

�1
−1 + 3

−1�3 �50�

and

�el = − 8d02�
�

L
2 1

−13
−1

�1
−1 + 3

−1�4 �1
−1 − 2

−1��3
−1 − 2

−1� ,

�51�

and the higher order terms in q are more complicated func-
tions of the dielectric constants and d. The term linear in q is
negative and is expected to cause an instability for long
wavelengths �20�. We notice that the prefactor a �see Eq.
�50�� is proportional to the membrane polarization charge
density �for a flat membrane� squared a� ��s�2, see Eq. �B4�.
The linear, nonanalytic, q term may be interpreted as fol-
lows: for the asymmetric dielectric case the external potential
induces an effective net membrane polarization charge den-
sity �s. The membrane charges interact via the unscreened
�there are no ions in the present limit� Coulomb interaction,
giving rise to the ��s�2 proportionality for a; the nonanalyt-
icity of the free energy arises due to the long-range character
of the Coulomb interaction �which decays as 1/r, where r is
the distance between charges�. We point out that the linear q
term does not depend on the membrane parameters d and 2
which means that this instability should exist for any inter-
face between coexisting fluids �fluid interface instabilities of
a rather similar nature has been investigated previously, see,
for instance, Ref. �6��. For the symmetric case 1=3 we see
that a=0, but the third order term above is still present b
�0, in general �see discussion below�.

For the case �ii� qL�1, i.e., the wavelength perturbation
is longer than the distance between the electrodes, the first

order force takes the form f̄ �1�=−�c+�elq
2+Kelq

4+O�q6��h̄.
In this limit the interactions between the membrane polariza-
tion charges become short range due to effectively small
�compared to the wavelength of the perturbation� distance of
the membrane to the electrodes. In this limit we thus do not
have any odd q terms the effect of the applied potential is
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simply to give an electrostatic contribution to the tension and
bending rigidity. The explicit expressions become somewhat
complicated, but can be produced straightforwardly by a
small q expansion using a symbolic mathematical software
such as MATHEMATICA or MAPLE together with the expres-

sions for f̄1−2 and f̄2−3 given in Eqs. �38� and �39�.
�3� For the symmetric case �=1=3, �=�1=�3� the

lowest order term in the q expansion is the tension term �q2

term�, both in the small screening length limit and for the
dielectric limit. For both these limits we have that the elec-
trostatic contribution to the tension �el is negative. Thus
when ��el� becomes sufficiently large, i.e., large applied po-
tential, a membrane stretching instability can occur. We also
find that in the symmetric dielectric limit there is a q3 term
present �for qL�1�, where explicitly we find �see Eq. �49��

b = 202
2�
�

2L
2

�−1 − 2
−1�2d2. �52�

We notice that b� Pz
2, where Pz is the membrane polarization

per unit area, see Eq. �B8�. For the symmetric dielectric case
the effect of the applied potential is to polarize the membrane
and the q3 term is expected to originate from induced, un-
screened, dipole-dipole interactions �which decays as 1/r3,
where r is the distance between the dipoles �15�� within the
membrane.

VI. SUMMARY AND DISCUSSION

We have in this paper derived expressions for the electro-
static contributions to biomembrane mechanical parameters
�such as tension and bending rigidity� in the presence of an
static applied potential across a membrane. The membrane
was assumed incompressible, nonconductive �membrane re-
gion described by Laplace equation�, and surrounded by
electrolyte solutions �described by the Debye-Hückel equa-
tion�. By solving the equations for the electrostatic potential
and using the stress tensor the forces acting on the membrane
were obtained, which in turn were used to obtain the free
energy and the electrostatic contribution to the membrane
mechanical parameters as a function of the applied potential,
the salt concentrations �entering through the Debye screening
lengths� and the dielectric constants of the membrane and the
solvents. Results of particular interest, that are found in this
study, include for �1� the small screening length limit, where
the Debye screening length is smaller than the distance be-
tween the electrodes, the screening certifies that all electro-
static interactions are short range, leading to a free energy
expansion of the form ��elq

2+Kelq
4+O�q6� �where q is the

wave vectors�, the main effects of the applied potential are to
decrease the membrane tension and increase the bending ri-
gidity; explicit expression are given in Eqs. �42� and �45�.
Our expression for the tension for the symmetric case repro-
duces the result in Ref. �7�. In Ref. �9� it was also found that
an applied electric field gives a negative contribution to the
tension. However, in that study the medium surrounding the
membrane was characterized by conductivities rather than
Debye screening lengths, and it is therefore difficult to di-
rectly compare our results to theirs. For sufficiently large

applied potentials the magnitude of the electrostatic contri-
bution to the tension will exceed the maximum tension the
membrane can sustain, leading to a membrane stretching in-
stability. Possibly, this instability can result in the formation
of pores and flow of ions through the membrane �in fact, the
membrane tension is one of the key parameters in the mod-
eling of membrane electroporation dynamics �21��. For �2�
the dielectric limit, i.e., no salt �for small wave vectors q
compared to the distance between the electrodes�, when the
dielectric constants on the two sides are different, the applied
potential induces an effective �unscreened� membrane charge
density, whose long-range interaction causes a membrane un-
dulation instability if the dielectric constants of the two bulk
fluids are different; this effect is characterized by a negative
term linear in q in the free energy expansion, see Eqs �49�
and �50�, i.e., this term is of lower order in q than the tension
term. Previous similar results include the following: In Ref.
�6� the interface between two immiscible fluids of different
dielectric constants was found to be unstable in the presence
of a perpendicular electric field. The case of stiff �charged�
DNA with bound, but mobile, counter ions was investigated
in Ref. �3� and a shape instability found �supposedly leading
to a DNA condensation�. If the two dielectrics on each side
of the membrane are identical, we found that then the applied
electric field will give a negative contribution to the tension.
Hence, if the applied potential is sufficiently large a mem-
brane instability occurs also for the �dielectric� symmetric
case.

We quantified the validity of the Debye-Hückel approxi-
mation �used throughout this study� and showed that our
results are in general valid in the small screening length limit
as well as in the dielectric limit. However, for “small,” but
nonzero, salt concentration and large applied potential the
Debye-Hückel approximation is no longer valid and one
needs to consider the full Poisson-Boltzmann equation. It
remains a future challenge to solve the full Poisson-
Boltzmann problem in order to find expressions for the free
energy for arbitrary salt concentration and, in particular, to
investigate in more detail the nature of the onset of the pre-
dicted membrane instability �via the negative term linear in q
in the free energy� as salt concentration is lowered.

Possible applications of the result for the small screening
length limit above would be to lipid membranes where a
potential difference across the membrane is enforced by ion
pumps incorporated in the membrane. Changes in membrane
rigidity might then be observed in micropipette or video mi-
croscopy experiments, if the screening length and the mem-
brane potential are large, see Fig. 3. Another possible experi-
ment would be to observe the structural change of domains
in a multicomponent membrane using fluorescence correla-
tion spectroscopy �FCS� as the membrane potential in a
patch clamp experiment is altered; one might be able to ob-
serve a change from a phase with caps to one with stripes or
buds as the effective bending rigidity is changed by the ap-
plied potential �22�.

For the cases discussed above where a membrane insta-
bility occurs, the system is expected to be driven from the
quasiflat shape into a new equilibrium configuration. Our
perturbation analysis cannot, in general, say anything about
this new configuration. However, for the small screening
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length limit we above speculated that the negative electro-
static contribution to the tension �for large applied potentials�
could lead to electroporation and a corresponding flux of
ions through the membrane. It may also be speculated �simi-
lar to the studies in Refs. �2� and �9�� that the electrostatically
induced new equilibrium configuration under certain condi-
tions could be a spherical membrane �a vesicle�; it is known
that vesicles can be created in laboratories in a process
known as electroformation �5� under the application of elec-
tric fields. We hope that the present theory will stimulate
further work directed towards the controlled estimation of
vesicle sizes as a function of electrostatic parameters, e.g.,
potential differences and electrolyte concentration.
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APPENDIX A: DERIVATION OF BULK EQUATIONS

In this appendix we show how the electrostatic equations
and the stress tensor used in the main text can be derived as
Euler-Lagrange equations from a free energy. Suppressing
the region index � for convenience we can write the appro-
priate free energy as

G =	 d3x�−
1

2
0��� ��x���2 + �� − p

+ 

i

ci�kBT�ln
ci

ctotal
− 1 + �i�� . �A1�

Here p= p�x�� is the local pressure, ci=ci�x�� are the local con-
centrations of the ions, ctotal=ctotal�x�� is the total concentra-
tion of molecules of all kinds �including water� and �i are
�constant� chemical potentials for the ions. The logarithmic
term corresponds to the entropy of mixing. Some of the
Euler-Lagrange equations of this free energy can be found by
demanding stationarity when varying the ion concentrations

0 = ��G

�ci�
ctotal

= �qi + kBT ln
ci

ctotal
+ �i. �A2�

Solving for the ion concentrations we find

ci = ctotal exp�−
qi� + �i

kBT
 . �A3�

Inspection of the expression for the charge density �
=
iq

ici with ci given by Eq. �A3� reveals that there is a
unique value of � for which � vanishes. We define �0 to be
this “equilibrium value,” i.e.,

����=�0 = 0. �A4�

The ion concentrations at “equilibrium” is labeled by

cbulk
i = �ci��=�0. �A5�

The Euler-Lagrange equation for � is

0 =
�G

��
= 0�� 2� + � , �A6�

which is simply the Poisson equation. Insertion of Eqs. �A3�
and �A5� gives the Poisson-Boltzmann equation

0�� 2� + 

i

qicbulk
i exp�−

qi�� − �0�
kBT

 = 0, �A7�

which when linearized gives the Debye-Hückel equation �9�
in the main text.

The force balance in the bulk regions can be found by
demanding that G should be stationary with respect to mov-
ing all fluid elements, particles and fields by an infinitesimal
position dependent distance �x� =�x��x��. Denoting fields after
the move by a prime one has the new fields

���x��� = ��x� , �A8�

p��x��� = p�x� , �A9�

ci��x��� = �1 − �� · �x��ci�x�� , �A10�

where x� =x� +�x�. The free energy after the move is

G� =	 d3x��−
1

2
0��� ����x����2 + ���� − p�

+ 

i

ci��kBT�ln
ci�

cTotal�
− 1 + �i�� , �A11�

and using

d3x� = �1 + �� · �x��d3x , �A12�

�

�xi�
= 


j
��ij −

��xj

�xi
 �

�xj
, �A13�

one finds that the change in free energy is

�G = G� − G =	 d3x

i,j

Tij
��xj

�xi
, �A14�

where Tij is the stress tensor for the system

Tij = 0� ��

�xi

��

�xj
−

1

2
�ij


k

��

�xk

��

�xk
 − p�ij . �A15�

Note that the first two terms on the right hand side of Eq.
�A15� are simply the classic Maxwell stress tensor. Perform-
ing a partial integration in Eq. �A14� one can see that the
condition of stationarity of G implies the conservation of
stress



i

�Tij

�xi
= 0. �A16�

Combing this with Eq. �A6� one arrives at the more physi-
cally revealing form
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− ��� � − �� p = 0, �A17�

i.e., electric forces should be balanced by changes in hydro-
static pressure. Finally, since we know the behavior of the
charge density � as a function of � from Eq. �A3� we can
integrate Eq. �A17� to find the pressure as a function of �

p = p0 + kBT

i

cbulk
i �exp�−

qi�� − �0�
kBT

 − 1� .

�A18�

The quadratic version of Eq. �A15� with Eq. �A18� inserted
is Eq. �36� of the main text. Note that the pressure can also
be written p= p0+kBT
i�ci−cbulk

i �, i.e., there is an osmotic
contribution to the pressure when ions are “confined” by the
electric potential �see, for instance, Ref. �23��.

APPENDIX B: TOTAL NET FORCE ON A FLAT
MEMBRANE

In this appendix we investigate the total force acting on a
flat membrane in some detail. From Eqs. �38� and �39�, and
Eq. �17� we obtain the following explicit expression for the
total force �per unit area� acting on a flat membrane:

f �0� = f1−2
�0� + f2−3

�0� = p1
0 − p3

0

−
0

2
�
��2� 1

−1e−�1L

�1 + e−�1L�2 −
3

−1e−�3L

�1 + e−�3L�2�2 �B1�

and �=1/ �g��1�l1+g��3�l3+d /2�, and l1= �1�1�−1 and l3

= �3�3�−1 as before �the function g�q� is defined in Eq. �19��.
If the fluids surrounding the membrane are incompressible,
then the pressures p�

0 adjust such that the above force van-
ishes. In fact, in this study we assume that both the mem-
brane and the surrounding fluids are incompressible. Let us,
however, in order to gain some physical insights, investigate
different limits of the nonpressure part of the above force
�i.e., we take p1

0= p3
0�.

�1� In the “small” screening length limit �1L ,�3L�1, the
nonpressure part of Eq. �B1� becomes

f �0� � 0. �B2�

The force is zero whenever the screening length is small
compared to the distance between the electrodes. Thus it is
not possible to get a net force on the membrane solely by
having different concentration of ions �free charges� on the
two sides. That there is no net force on the membrane can be
related to the fact that their is no net free charge around the
membrane, which can be understood from Gauss’ law

�D� · n̂dS=Qfree, where D� is the displacement field and Qfree is
the enclosed free charge: since far from the membrane on
both sides the electric field is zero �in the here considered
limit, see Eqs. �15� and �16�, and Fig. 2� so is the displace-
ment field, and applying Gauss law �for a large “pillbox”
enclosing the membrane and the Debye screening layers� one
finds that Qfree=0, as well as no net charge due to changes in
polarization of the dielectric media. The effective net charge
for the membrane and the Debye screening layers is hence

zero and there will be no net force due to these charges.
�2� In the dielectric limit �1 ,�3→0, we find

f �0� = − 20�
�

2L
2 1

−1 − 3
−1

�1
−1 + 3

−1 + 2�d/L�2
−1�2 �B3�

for the nonpressure part of the force. When there are no free
charges, as considered here, the Gauss law argument above
does not apply. One then needs to also take into account the
bound charges, which create a polarization surface charge

density �1–2
s =−�P� 2− P� 1� · ẑ �see Ref. �15�, Chap. 4� on the

region 1-2 interface. Similarly, for the region 2-3 interface

we have a polarization surface charge density �2–3
s = �P� 2

− P� 3� · ẑ. From the fact that P� =D� −0E� and that the normal

component of the D� field is continuous we find that �1–2
s

=0�E� 2−E� 1� · ẑ and �2–3
s =−0�E� 2−E� 3� · ẑ, i.e., the polarization

surface charge density is determined by the jump in the elec-
tric field at the interface. Using the explicit expressions for
the potential ��z� given in Sec. III and that z component
of the electric field is Ez=−�� /�z we find �1–2

s

�−0Ez,appl�1
−1−2

−1� / �1
−1+3

−1� and �2–3
s �0Ez,appl�3

−1

−2
−1� / �1

−1+3
−1�, with the applied field being Ez,appl

=
� / �2L�, where we assumed a small membrane thickness
d /L�1. The effective membrane charge density �s=�1–2

s

+�2–3
s then becomes proportional to the dielectric asymmetry

between regions 1 and 3, explicitly

�s � 0Ez,appl
3

−1 − 1
−1

1
−1 + 3

−1 , �B4�

where the proportionality �s�3
−1−1

−1 follows directly from
the fact that the jump in the electric field is proportional to
2 /1 �2 /3� for the region 1-2 �region 2-3� interface �see
discussion at the end of Sec. III and Fig. 2�. Thus, whenever
1�3 we have that the membrane has an effective net
charge of induced bound charges, which when put into the
applied electric field Ez,appl gives rise to the force above; note
that the force is proportional to �s as it should �for d /L�1�.
We also note that Eq. �B3� for d→0 can be written

f �0� =
1

2
�1

3
− 101�ẑ · E� 1�2, �B5�

which can be compared with, for instance, the formula in
Ref. �18� for the pressure decrease in a fluid at the fluid-air
interface due to a normal electric field

ẑ · E� 1 =

�

2L

21
−1

1
−1 − 3

−1 �B6�

on the fluid side.
�3� For the symmetric case �1=3=, �1=�3, and p1

0

= p3
0� the nonpressure part of Eq. �B1� is zero,

f �0� = 0, �B7�

since for the symmetric case there is no net surface charge,
and hence no net force on the flat membrane. We point out,
however, that the membrane gets polarized. In particular, the
polarization per unit area in the z direction �using the results
above� is
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Pz = �− d��1−2
s + d�2−3

s = 0Ez,appl�−1 − 2
−1�d �B8�

in the dielectric limit.

APPENDIX C: ALTERNATIVE APPROACH TO TENSION
AND SPONTANEOUS CURVATURE

In this appendix we will demonstrate an alternative ap-
proach to deriving the tension in the membrane, which can
also be used to obtain the spontaneous curvature induced by
the electric field. This approach consists of calculating mo-
ments of the deviation of the pressure profile from the value
of the pressure far from the membrane. We will therefore in
this appendix only study the small screening length limit,
where effectively L→�, such that the pressure approaches a
well defined pressure away from the membrane.

The tension is obtained as the integral of the lateral pres-
sure profile deviation or, equivalently, the excess lateral
stress, of the planar membrane �24�. Choosing the diagonal x
component of the stress tensor to represent the lateral stress
one has the precise formula �24�

� = 	
−�

�

dz�Txx
�0� − �− p0�� , �C1�

where we have used that the pressure on the two sides of the
membrane should be identical p0= p1

0= p3
0, since the zeroth

order force in the small screening length limit �B2� vanishes.
In terms of the zeroth order solution given in Eqs. �14�–�16�,
we obtain

� = −
0

2
1�1A1

2 −
0

2
3�3A3

2 − 02dA2
2 − 2d�p2

0 − p0� .

�C2�

To obtain the final result we need to find p2
0. To do this we

note that in a flat equilibrium configuration the force on the
two region boundaries should vanish, f1–2

�0� =0 and f2–3
�0� =0 �or,

equivalently, Tzz
�0��z�=−p0 for all z�. From either Eq. �38� or

Eq. �39� one finds

p2
0 = p0 +

1

2
02A2

2. �C3�

This gives

� = −
0

2
1�1A1

2 −
0

2
3�3A3

2 − 202dA2
2. �C4�

This expression is identical to the tension given by Eq. �42�
in the main text.

An advantage of the approach of integrating the stress
profile is that we can obtain the change in spontaneous cur-
vature C0 induced by the electric potential. If we include a
spontaneous curvature in the Helfrich free energy G given at
the beginning of Sec. V B, writing it as

G =	 dA�1

2
K�2H�2 − KC02H + �� �C5�

and, as before, calculate the force f rs=−�G /�h, then the
spontaneous curvature will drop out at linear order in h and
we would end up with our previous expression for the force
where C0 is not present; thus it is not possible to obtain the
spontaneous curvature using the approach of the main text.
However, just as for the tension, the spontaneous curvature
can be obtained from the lateral stress profile, namely, as the
negative first moment of the lateral stress profile, sometimes
also called the bending moment. The formula is �24�

KC0 = 	
−�

�

dzz�Txx
�0� − �− p0�� , �C6�

and insertion of the zeroth order solution gives

KC0 =
01

4
A1

2�1 − 2�1d� −
03

4
A3

2�1 − 2�3d�

or, explicitly,

KC0 =
0

4
�
�

2
2

�1l1
2�1 − 2�1d� − 3l3

2�1 − 2�3d���2,

�C7�

where �=1/ �l1+ l3+d /2�, l1= �1�1�−1, and l3= �3�3�−1.
Note that C0 vanishes in the symmetric case where �1=�3
and 1=3 as it should.
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